# A REVIEW OF THE INVERTEBRATE PHYLUM KAMPTOZOA (ENTOPROCTA) AND SYNOPSIS OF KAMPTOZOAN DIVERSITY IN AUSTRALIA AND NEW ZEALAND 

by KIRSTIN WMSEOM


#### Abstract

Summary      current knowledge about Kamptnzo, apdating the last geteral tongish-Faggage desetpmon al the phytum provided by Hymat on 195: Kamptososion mophology, repraduction, and phylogenctic relahonstips ara chatacterived. Finally, each of the three major kimptoroun families is described woth examples drawn firmo Australia and Nesy Zealand, Curently 37 speles are knembltom the region but many more remam to be discovered. The Ausirakian faum is musually mely and varied and ineludes the world's lirgest kumptozoan species.


## Introduction

Kamptonans are linyz, tentaculate suspension feeders that live in all oesens of the wortd. Clonal agercgations of independent pooids 10 ig , (d) ate found on thyertebrate hosts, while colonies of intercomected rosids ( 1 ig . Db, c) grow on tarious substata. Each zooid has the shape of a wine glase: a bowi-shaped calys is suppored by a slender, flexible stak that attaches basally to the substatum. The calya is ringed by a horseshoe of ciliated leeding fentactes and contains a U-shaped gut, a smail ganglion, a pair al protmephridia and one or two pairs of gonads. The space encolosed by the teratactes forma an atrium, the deepest part of which serves as a hrund chamber for developing embryos:

Kamptozan nerids astively hend and iwist. Their eharacteristic motion is refleced in the phylem's scientific name (Greck: Kamprestai - wo bend) and its common parne, "bodding beads". Another name for the plyylum. Enteproch is less approptiate beciuse it suggests an affiliation with the Ectoproeta (Bryozoh) and it mplice crroneousty that the anus is complectly enclused by the tentacular ciliation. Kamptozoans hoar only a superticial resemblance to bryozoans. with which they were once grouped. Desclopmentally, kamplozanion are spiralians bol theif phylogenetic relationships to other metazoans remain enigmatic.

Abeut 150 species have been described worldwide hut kamptozoan diversity probably exceeds 500 species (Nielsen 1989). While they are widesprend and are quike aboindant in some microhabitats. mest of the world"s kamplozeans are poorly characterized

[^0]or not known at all, because moss speeies are liny and easily overboked, Kumptoroans oceur in all oceans, from the intertidal zone to several hundred metres depth. A few colmial species-live in brackists Water, and one in treshwater. Representatives of alf three major lamilies (Loxosomatudas., Pedicetlinidac. Barentsiidae) have been found in every marine region that has been thoroughly surveyed. The foumth family (Loxokalypodidae) has been found only ones. in alfe northeastem Pacifie.
The main purpose of this review is to synthesize current knowledge shout the kamptoona. The last general English-language deseription of this phylum Wats provided by Ityom (1951) and there have been many advances in our understanding since fhat time: In sumbarizing what is known abou kamptozoans, I draw houvily on work hy two revent pioneers in kamploroology. P. Enschermann le, g. Enschemañ 1972, 1982) and C. Nictsen (c.g, Nielsen T971. 1996: Nietsen and Jespersen (442). A second objeutive of this review is to highlight the neh and unastal kumptoperm fanna of Australid and New Zealand.

## History of study

Kumptozoans were first illustrated by Gillis $9175 \%$ ) Pallats ( 1774 a , b) described the fiest species as Brachionus carnus. placing it in a genus of rofilers. The sume apecies wat plased in the new genus. Pedtecthim by Sars (1835), who consideted it at naked bryozoan. Van iseneden (1845) contributed the lifst thofough monograph of kamplozoan merpholugy and reproductions. The gemus Cimatelho wats described by Dicidy (1851) and lavewnma by Kelerstein ( $1 \times 62$ ). Altman (1856) pointed out the uniqueness of kamptozoan calys and ventacle structure. Nitselie (1870) conceived of Pedicellimoz:



Urmatla and lorosomat as a natural grouping. the Entoprocta, and separated them from all other bryozoans, whe Eetoproctia. Hatschek (1888) lirst raised the entoprocts to the level of phylum. Clark (1921) proposed the name Calyssora to distinguish this phylum limether lion the bryozoans: Cori (1929) agred with this intent, but changed the name to Kamptozoin since the name Calyssoroa had already been appled to another taxon (the enidarian Stauromedusac). Late in the 19 ll century, a number of prominent scientists investigated kamplozoans, emphasizing embryological and phylogenetic questions (e.g. Barrois 1877; Ilarmer 1885; Sceliger
1890). Since then, only a few researchers at any one time have focused on kamptoroans.

## Morphology and physiology

## Extcroal characteristics

Kamploam moids are generally constructed of a stalk, basal attachment and calyx (Fig. 1). The height of individual zooids ranges anong species from 0.330 mm . The stalk develops as an outgrowth of the calyx to form a flexible, roughly cylindrical support. (lomal forms (Family Loxosomatidae) have a specialized hasal organ (either at muscular suction

 Niclasm (IWOS).


1ige, 3. Diagrammanic lop view al in pedicellinid caly,
dise or a differemiated "Foot" with an associated gland (Fig. lat) with which they atanch to invertebrate hosts. Bencath the stalks ol most colonal forms families Pediccllinidac and Barensiidac), stolons (Fig. IV. E) adhere to various living and notr-living substratia with cuticular adhesions. The cup-like calyees range in height from 0.2-1.2 11110 and are ringed by a horseshoe of tenticles. The mouth and antis are at opposite sides of the ealyx, regarded as anterior and posterior respectively (Figs 3, fh). The cally is bilaterally symmetrical: a vertical plane through mouth and anus divides the calys into right and leti mirror images (Fig. 3). The region above the stomach is ventral (this region was below the stomach itn the larva): the bottom of the calyy and stalk are dorsal (Fig. 4b).

## Bodi' 1wall. muscenlame and sumparl

The body wall is a single-layered epithelian. covered by a glycoprotein cuticle containing a trace ( $0.06-0.45 \%$ of chitin (leuniaux 1982) but no collagen (Emschemban 1982). The cuticle is generally thickest on the stalk, which may be darkly pigmented, moderately thin and ransparent on the calys. where the internal anatomy can be readily

 wexpanded temale P? whitelogoio calya.
observed through the body wall. and thunest on the intiet (froutal) side of the enentacles (Nictacts \& Jespersen 1997).
sirong longiludinal musele libres beneath the stalk epittretium produce the characteristic bendine metions of kamplozoan zodids. (ircular muscles are limited to sho lentacular menibrane and aphoncters botween patis of the gitul. The sirncture of musicte libres has beon deseribed by Einsehemamen (1969h, 1982), Reger ( 19699 ) and Nietsen and Jespersef (10971. Kamplogeans lack at euclom. The cavity surrounding the calycal organs and extending into the tentacles ated stalk is filled by a loose Iluid matris of mesenchyme cells which aets its it hydmstatiosketeon aind, togethet witr the cutiele, leoded the stalk reidity (Brien 1459).

## I meamorion anct moxamont

All kilnntogamis have larvac hat subin or creep by cilary action. Whate larvac represent the mam dispersal mode for most cototrial. and perthaps many solfary species, stome species are mobile at ofter stages of the life-eyede. In some-loxosomatid species, besly released, assexually produced buds can swim woth their stalk: forward. propelled by theit tentaculat cilia: in a lew loxosonatids. adules may alsor be capahte be such swomming (Akins 1932; Rylund \& Austion 19h(); Nictseb- $19(00$ ), In toxosomatid species Bhose adollscam allach repeatedty io the subsiratum. passive triftinge of aletached zooids may also serse fort dispersial. Mose colonial forme are sessile ace Fodules, hat in the fieshwater species Upataella grätio Leedy 1851 , shorl propagation stolons of Lme or three eogids ofien break from a largen edons. leadine to rapus colonization of a favourable area by fragments of the same griginal colony when have spread by drifing (Emschermann 1987).
In some spocies in the genus Loxatoma. hooids employ their basal suction dises to somersaule aceross the substratuas (Asshewon 1912: Nielsen 1964). tonoving in o manet laseluating and umique by a setuss af gymmastic ellorts. which combine the unility of the kangates and the deliberation of a geometer eaterpillar" (Assheton 1912). The muid beads dewn until the ealyx allaches by Pour long orat entacles to the subsitalum; the suction dise then detaches from the substratum and flipsover the ealy $x$ is reafaeh some distance frem its origntal site; the pomid then retuins to an upright orientation (Fig. 2),
While didult deamotion sacurs in ginly some species, the nom-locomotory bendins motions of athached zoonds are characteristic of all nembers of the phylum. Nlthough the rapid and vigorous nesding of kamplozoans inmediately cateses the observer'secye. the mechamisans and stimuli involved lave nut bose thurughly sevamined. Bending of the sualk results from stromening of longitudinal inuseles.
on one side (Brien 1959). A stronger beademg resporise is optained by slimatahon of enfyces that ol'stalks (Cori 1936). The modding and writhere may help mouds escape predators, may dimimish overgrowith hy fouline organisms. of naty groce ond the calyce Irooi repeatedly liltermg the same svaler-

Finally. individual calyees have a eltameterisuic Fesponse to disturbance. When imitated, the tembacles curl irwards and ate enclosed by a delicate layer of tissuc; the tentacuber membrate (Figs 3, 4), which lightens like a draw-string purse by means of efreular muscubature. This imolling of the tentaces resembles the contracion of a sed ancmone more than the estraction a bryoram lophophore.

## Feveling und digestie syshem

Kamptozoans are suspension lecders on phytoplankton and other particulate rood. Estil Ienlacte hus five Iongiludinal nows of ciliated vells (Atkits 1932: Mariscat 1965; Nielsen \& Rostgaurd 1476). (On the sides of each tentacte \{IFis 3). late |stema dells bear compound cilia that beat wwarde the tentitele's frontal midline (Nielsen \& kostgaind 107(t): these cilia genenate the lecting eurrents. Water is drawn between the entacles from bedow shas Lentacular crown. then sent upward away from the calyx (Avkins 1932). The lateral eila abot caplore particulate lood fom the water currents they create: kamptozoans employ a downstream evilceling nuchamisin (Nielsen \& Rostgatard (976), Inside the rows. of lateral cells, roins of namen latecofrobtal cells had shorl cilia that presumably transler fond from lateral to frontal cilia (Mariseal 1965). Hre frontal misline of each tertacte has a single rowy of large frontal cells bearing stoot cilia and small muchs vesjeles; these eitia beat with the offeetice stroke lowards the base ol the lentavter and transpori captured partieles in a band of nucus to the base cil the tentacks: (Neetsen \& Rostgatard 1976). Food partieles then undel in ciliated gutters, the rieht and left atial grooves ( $\mathrm{Fig}, 3$ ) to the monti (Akigh [932).

Some katoptezosns apparcolly (rap eiliales and other nrganisms by rapidly contracing the rentacular: erown (Atkins 1932). One Atrareric kamptoroun bas special multicellular ostrusive organe (rlme-twig glande) that discharge hollow sticky threads, presamably to sapture targer prey atems that supplement is died of suspended particles (Ensefiermann i993b).

Kimplozoans have a U-shaped gul. wilh tooth the moulh and anus opening ventrally (Figs 3, 4b). The digestive tracts of larvae and adults are simple tubes of cilisted eptheliun divided ino Four regions, ind have heen characterized by Beck ( 9388 ) and adekent and Jespersen (1947). The creseent-shaped mumth (Fig. 3) leads lo a lunnel-like buceal cavity, then to a
bartoter ossophagus that opecus into a volumbinus slomath lilling much of the eaflyx (Fig, 4b). Ifgested panticles are embedded in strands of mucus that are keDt in constant rotation by cilta in the stomach: the bul haeks musctlature exeept at sphineters between regions and fond is transported entirefy by ciliary actorn 1Becker 1938). The steands gradually conselidate inte clumps as they pass towards the intestine. Digestive effeymes are secreted by glandular sefle in the vental "roop" of the stomach: absorption oecurs buib in this region of the stomath and in the intestite (Becker 1938). The stomach leads in a short intestine. and then to the rectum. whicf projeets above the floor of the atrimm (Tigs 3 , the sach that faeces released into the tentacular water current are swept away from the calyx. When the tentaclesare contracted, the reetam lolds lid-ijke axt the atrium.

## Ciremafory and regpiratory sustems

Since kamprozequm ealyees are tiny. dillusion is a suffecient tabsport mechanism: no spectal organs. faciliale circulalion within the calys forose mesenchyme surrounding the organs allows for the free circulation of dissulved gases and numemis. Conoraty 4 e eatlier indications (a.g. Iyman 1951 ). thes are to free amoebocytes cobiancing notrient Iransporl within the mesenetryme matio (Fmschermann (969) $)^{2}$. In foxesomatids, fluids also pass freely between the calys and the stalk. helped on their way hy muscular movencens. In many cetomal kampteroans, diffusion may not sutfice for circentation tbroughout the zood becanse the stalk is often mueh longer than in loxosomatids and is parily separated from the ealys by a cuticalar septans. Pedicellimids and harentsids have a eiretlatory struclure, the slar-cell urgan (Emschermann 1969a). A stack of hattened, stellate eells spans the nurrow sthe beweeen the stalk and ealys (Eig. 4h). The topmost ceff contracts and cxpands like a pipetcehuth; rbylbmic pulsitions of the stacked vells pump Oluids butween salyx and sialk (Emschermann 19(9) 01

## Eiverevion

A pail of thame-hulb pootoneplotidia, located just posterion of the ascophages (Fig. 3), apporenty functions matily if fon regulation and osmoregulation (bmsebermann 1482), Each protoneplridiom is composed of four multicilated vells. 'Two of the eells form a letminal organ, with a littratum area whore they interdigitate; the therd and Buath cells eneirele the nephridial lumen, and the lourth cell forms the nephridiopore (Franke 1493). In loxosomatid calyces, the two protonephridia oper separalety into the atrium. while in stolonates-1 bey open through a common nephridiopore (Franke
1993). The freshwater kamptozoun (irmotellor gracilis has a more highly developed exctetory system, with 3 ()-40 protonephridia in the calyx, and many others in the sialk (Emschermann 1965).

Excretion of metabulites rakes place io the ventral Stomach "poot" (Fig, 4), a region that is offer eyecalchong hecause it is conspicuusly coloured by the pigments of consumed phytopiankton. The large vactuoles of eells it thes region contain precipitated utic acid and grenine ats well ats algal pigments (Beeker 1938, Emischermano 1465). These intracellular inclusions are eventually vapelled intu the stmmach and voided

## Nervons sysem and sense orgeths

A large, dunbbeli-shaped ganglion lies ventral to the stomach. just posteriot to the protonephritia (Fig 3). Nerves fadiate from this subenteric ganytion to the lenticles. to other parts of the calyx, and to the stalk, Many kampuzoans have unicellular tactile receptors on the rentacles and on the surface of the calyx (Nielsen \& Rosugard 1976). In addtion. Joxosomatids ofien have e pair of lateral sensed urgans consistiog of eiliated papilae on the righ and leff sides of the calya, there ate no nervous connections berween zooids in a enlony: eartier suggestions ( 1 tiltor 1923) of an interrooidal werv ous systen have been rejected (Fmschermann 1982).
The larvace of many loxosomatide have a pain of eycs. each consisting of a cup-shaped pitment cell, a lens cell ind a sensury cell. The structure of the eye is undisual in that light enters perpendicular to, rather than paratlel to the long axes of the sensory cilia (Woullacott \& Hakin 1973). No adult kamptozoans are hnown to have eyes but rooids of some species contaet in respohsie to sudden exposure ta bright light (Enschormann 1082).

## Reproaluction and development

## Aresual sipoduction

All kampleroans egroys by buddmg. In toxosombits, whicf tive of ofther inverkbrates, buds form in Iwo anterior or anderolateral regions. of the culys, often roughly level will the top of the stomach (Figs la, 5a, b, Ma b). Buds may be produced aleenately or simultaneonsly at the two budding sites. The basal part of the bud's stalk develope an atachonent ofgan. The bud may memain atached is its "patent" for some time, leeding and even becoming sexually malurs but il evenlually breaks away, offen athaching to a mearly spet on the invertehrate host.

Colonial kamptoroans also bud at the anterior Face of zooids, but budding aceurs eatlier in the life of coods than in loxosomatids (Brien 1959) The connd-prodacoge bods are offen themsetves still tiny


Fig, 5. Asexual reproduction. (a). Calycal budding in Loxosomella sp. 5, (b), Calyeal budding in Loxosorna sp. 1. (c). Budding at the stolon tip in Barenasia mansushimama. (1). Budding at the slolon lip in Pedicellima proformis.
buds; cach stolon tip is a bud primordium forming anterior to the next youngest bud (Figs 1b, 5c, d). As the buds grow and differentiate into fully formed zooids, they are separated by intercalating growth of the stolon. Eventually this growth ceases and a septum with a central opening forms on each side of ${ }^{2}$ the zooid, partitioning the stolon into fertile (zoooid
hearing) and sterile (without zooids) segments (fiys 1b, e, 4a). Because of this pattern of formation, the anterior side of every zooid along a stoton faces the growing stolon tip. Colony form can be more complex in some barentsiids, which but from specialized stalk regions. In some species, resting buds (hibernacula) are lormed at stotom tips. These
andifferentiated buds are enclosed in single or multiple chambers and are covered by a thick cuticle. They germinate only alter the stolonic connection to the rest of the colony is severed. and following exposure to low temperatures (Toriumi 1951: Enschermann 1961, 1982).
Pedicellinids and barentsiids, unlike most loxosomatids, can regenerate calyces. Old calyces degenerate and are shed and are replaced by a budding process at the apical stalk tip comparable to that at stolon tips. Injured barentsided zooids can regenerate new calyces and stalks even from basal stalk and stolon remmants (Hyman 1951; Brier 1959: Mulkui \& Makioka 1978) .
Patterns of bud lomation at the histological level are very similar in all kamptozoans (Seeliger 1889. 1890 , Brien 1959). An epidermal proliferation of the anterior body wall of a zooid results in inn evagination that lorms the buel primordium. Budding is essentially an ectodermal process; while some mesenchyme cells migrate from the "parent" into the bud, 16 ) endoderin is contributed. At the apex of the bud primordium, an invagination forms, then constricts into an upper and lower vesicle, which become the atrium and the digestive tract, respectively, A narrow passage connecting the vesicles becomes the mouth, while the anus breaks through at a later stage A constriction soon separates calyx and stalk and the latter elongates. Fventually the atrial cavity breaks through, frecing the ientacles, and the bud begins to feed.

## Sexual reproduction

Most loxosomatid calyees arc protandric, with a diserete male phase followed by a female phase (Nielsen 1971; Emschermann 1993a); calyx gonochorism has also been reported (Ilarmer 1915; Prenamt \& Bohin 1956). Barentsid calyces are bypically gonochoric (Wasson 1997). Some barcuntsiid colonies are gonochoric, too, containing calyees of only one sex; other barentsicl colonies are simultaneously hermaphroditic, with both male and lemale calyees formed along the same stolon (Mukai \& Makioka 1980: Emsehermann 1985; Wasson 1997). A very few barentsiid species have simultancously hermaphroditic calyces (Johnston \& Angel 1940; Wasson 1997). Some pedicellinids have gonochoric calyces in gonochoric colonies (Marcus 1939); others have gonochoric calyces in simultancously hermaphroditic colonies (Dublin (9005); still others have simultaneously hermaphroditic calyces (Brien 1959; Emschermam 198.5).

The reproductive system is rather simple in both sexes. (ionad rudiments derived from mesenchymal cells lirst appear above the stomach as a pair of tiny oval translucent vesicles (Mukai \& Makioka 1980).

These grow into large ovoid sacs, consisting of at onc-layered epithelium which is the germinal layer from which the gametes arise (Brien 1959), In simultaneously hermaphrovitic calyees, a pair of testes lies posterior to the pair of ovaries. Each gonad feeds into a gonoluct, and the right and left gonoducts merge at the ventral midiline to open through a common gonopore posterior to the ganglion (Brien 1959).
The testes grow rapidly and may fill mueh of the calyx (Figs 3, 4a). The spermatozoa have clongate heads (Emschermann 1982; Framzen 1983b). Spawning has rarely heen observed; apparenly a clond of sperm is released following a sudden contraction of the calyx (Dublin 1905).

All kamplozoans brood their embryos and release lilly formed larvae. The ovaries remain mueh smaller than the testes (Fig. 4b), with only a few germinal cells at any one time differentiating into oocytes. The sinall (40)-80 $\mu \mathrm{m}$ ) but yolky eggs (Franzen 1983a) aro fertilized in the ovary, then discharged into the deepest part of the atritun, the brood chamber (Cori 1936; Marcus 1939; Mukai \& Makioka 1980). A glandular region of the oviduct secretes a pliant envelope, which encloses the embryo and extends into a cord which tethers it to the floor of the brood chamber (Mareus 1939; Brien 1959). The ovaries release one or a felw eggs per day in allernation, the youngest embryos pushing the older ones farther from the gonopore (Brien 1959). The tehered embyres, like a varied bouquet of balloons, can occupy a substantial portion of their mother"s calyx (Fig. 4b). The brood chamber contains many embryos in a regular succession of stages from cleaving eggs to contractile larvac. When larvae hateh out of their envelopes, they remain attached to the atrial wall by the cord, with their mouth and ciliary band upward, allowing them to leed on particles in their mother"s current (Bricn 1959; Mariseal 1965). Swimming larvac are relensed about a week affer fertilization (Mukail \& Makiokil 1980).

## Eubryology and development

Kamptozoans show typical spiralian, determinate development (Barrois 1877; Hatsehek 1877; 11armer 1885; Lebendinsky 1905; Mareus 1939; Malakhov 1490 ). Cleavage is spital and the 4 d cell is a mesentoblast vell that proliferates loose mesenchyme in the interior of the embryo. eventually giving rise to the muscles (Marcus 1939). The arrangement of cefts at the animal pole resembles an annelidan rather than a mollusean cross (Marcus 1939). The larval mouth forms very near to the anterior margin of the blastopore, which eventually closes; the anus forms secondarily as well. 'There is never any hint of coelon formation (Marcus 1939).





d
e

「ig. 7. Schomatic reposentation of metamorphosis in Pedicelfind comed, (a), Syimming barvat (b), Newly sefled larva, (c). Period of tigorous anterior growth. (d), Zooid with sepsation beiween stalk and ealys: lentacles forming. (e). Fooding zooid. Moditied Irom Lori (1929).

Kamptozoan latvae are gencrally hat-shaped (Figes 6. 7a), Salyim-Plawen (1980) suggested the name itoblophora (ciruck: Ithelos - dome; tholia - straw bat) for them. There are a number of detailed deseriptions of larvac (e.g. Barrois 1877; (on 1024; Marcus 1939; Mariseal 1965; Nielsen 1971) from various regions of the world. The hyposphere of the larva is deeply fodented into the prominent, hat-like episphere when the larya is swimming. The curve of the U -shaped gut is in the upper part of the hat; mouth and anus open on the ventral surlace (1ig. 7a). 'There is an apical organ at the top of the hat, a frontal orgatr at the front of the hat, and a ring of long compound cilia around the brim, just above the month (Figs 6, 7a). Below (ventral to) the mouth, there is a second band of shorter compoond cilia in the shape of a horseshoe, with the opening of the horsestoe at the anus: the baud is also broken behind
the mouth, These the e ciliary bands beat in opposition and capture particles that are then Iransported to the mouth by short cilia in the atrial grooves, which run beween the two hands of longer cilia from anus to mouth on both sides, as in the adults (Fig. 3). Often there is a ciliated creeping loot in the ventral area between mouth and anus (Fig. 7a). Sone tholophores show unusual features (stalked vesicles, a spiderweb paltern of omamentation, an athering layer of detritus, etc.) that are not yet understood (Nielsen 1971).

Tholophores resemble the trochophores of some spiratians (Balfour 1885; Cori 1936; Nielsen 1971. 1995; Emschermann 1982). The downstreamcollecting ciliary bands of tholophores are similar to those of trochophores in cell-lineage, structure, and function (Nielsen 1905). The apical organs of tholophores also resemble those of trochophores. But
tunlike tenchophores, most tholophores have a frontal ergen and a siliatod foot, and their hyposplere is deeply indented into the episphece when the larva is swhoming, A few loxnsomatid larvae lack the frontal argan and feot and have a more pronounged liyposphere thus notere serongly resembling troshophores, but these forms are considered derived, not ancestrad within the phylum (Miesen 1971) The siremgest resemblance of tholophores is 10 adule kampewaan calyees; larva and adule share the same shape, strieture of the digestive system, atrum thitt atrat groyes and a xery similar ciliary leeding mechanram.

Larvae from only a lew Nustalian specien are knowni. One haxumomelu lisvas (lige (9a) is elongate in the anterion-posterior axis, with adfering partictes and at veli-devoloped firol. The Pedisellima whrokegiti Johnsion \& Walker 1917 lana (Fig. ob) is lall in the ventral-dansal axis, covered with is remarkably donse layer of detritus, and lacks a foot (Wassoni 1995). Ihe Barenlyat zataifas Larva (Fig. 6e) is relatively big, nocupying a large porfion of the parental ualyx. It is about is high as wade and is lice of adhsent particles.

Most thotophores appear capable of both swmming and creeping: it is not known in what wstent the larval period of most species is pelitgic of benther, Most thelophores are Feeding larvice with a functionsl gut. However, the larval period of many kamptoroouns appears to be extremely short - hours to days (Nyelsen 1971: Emschermatom 1982, Wassion 1998) - so the larva's Feding while still in the breod chimber may be mone important than fecdiede after efeases Ont the ather hand, some Lenesomularvate are bllen cupght in the plankinor and anc presumed to have a kong pelagie phase (Jagersten 1404; Nielsen IGet)

Metamborposis has hoen carefully deseribed in a Lew kamptozoan species (Barrois 1877: Harmer 1887: Cori 1436; Marcus 1939; Nielsen 1971: Emschermant 1982). The larva ereeps on the substratum, esting it with the frontal organ, before utaching by lie region around the frontal orgat. sembing on the aptertor side floxosonatids) or bye athehing by the foot region, settimg of the choumbercice of the retracted ventral cilhary pardle (pedmeellinids and barenisiods). The elfium trecomes enclased by a constriction of the eprisphere dursal to the cilary gridle (Fig. 7h). The atriun and degestive tract ire rotated upwards as a tesule of rapiod growth of the anterior region of the episphere ( F ig. F () . Nevt, a separation forms between calyx ind stalk and the tater elongates (Fig. 7d). Ciliated tentaces form as ectodermal protuberances at the peripbery of the arium (fig. 7d) mughly in the locatom of the degeneratiog larval eilary hands. Finally, the atrium breaks epen. releasing the leblacles, and feeding begins ( Fg gel .

While in alt colonial and many clonal species the larva doss metamorphase dircelly intor the idalt, seme loxosomatids have precocious budding inwhich the larva deves not metamorphesic; bua mesteasl dies as the buds it hears grow and are released (Hmmer 1885 ; Atgetsten 1904: Nielsen 1971). In effect. the larval bud, tather than the tarsa itselt, is the roule to athlitheod in these species. In the most extreme cases, the larvar is completely sonsumed by an internal bud that Forms while the larve is still within its porent, and the lareal ght is absent ( Nietsen 1471). Some remerkable species disptay further helerochong: the huds themselvesalrady hatw buds if rum or even are sexually marare while still cottained in the larva (Jagerston 1904 ).

## Phylogeny

## Foswil record

Kimptozonns fossilized by biommuration oceur in upper Jurassic rocks in Greal Brmain (Fodd \& Taylor 19031 and nothen trance (.). Todd pers. cemm. 1945). The stracture of rooids unambiguonsly identities them as members of the extent genus Bumentaza, Thesce Menogoic Fossils set ; minimim time for the diverqenec of what is probably the most derived fimmly, suggestime that abeestral members of the phylum may date back much turther.

## Redationships with shth invertotrate tade

Ilistanically, there buve heen several proponentio of a cluse relationship between kamploseans and bryozoans lece. Ilarmer 1885; Marcus 1939-Prenani \& Bobior 1956; Nielsen 1971. 1995). Zooids of both laxat have a L-shaped got and are ringed by eiliated tentacles. Buddeng and hibernacula ocear in both laxa and nether hat and endodermal coniribution from "parent" bo hud In boll gmups. lanal eyespols have sensory cilia ariented at right angles to the ineoming light (Wooldacott \& Eakin 1973), However many other workers reject a elose evolutionary aftilation of kamptozoats with biyozoans (e.g. Allman 1856: Hatsohek 7888 : Con 1436: Hyman 1451; Brien 1954: , Iagersken 1972: Emsehermann 1982). They atiribute the similat body plans of adults to commen suspension feeding habits and tiny bedy srass. Budding and hibernacula are found in many bessike taxa and lack of endodermal contribution us huds is found in pterobranchs and some ascidians as Hetl as kamptosouns and bryw<oans. The smimaty of the larval eyes is sitriking but, since the eyes are constructed sumew hat difterently (Woullacott \& Eakin 1973) , they are not necessarily luntolagous.

Beyond aseribing similarities to convefgence, opponents of a close refationship between
kamptozoans and bryozoans emphasize the dilferences between the two taxa. Kamptozoans have no coelom; bryozoans do, although it is rather unusual. Kamptozoans have protonephridia and gonads; bryozoans do not (Emschermann 1982). Kimptozoans retract their tentacles by curling them inwards and pulling the tentacular membrane around them; bryozoans retract the whole polypide and the lophophore shats like an inverted umbrella (Brien 1960). Kamptozoans have downstrean-collecting ciliary bands, while bryozoans have upstreamcollecting ciliary bands (Nielsen \& Rosigaard 1976; Nielsen 1995). A key component of the bryozoan body plan is the box-like cystid, absent in kamptoroans. There is little evidence of communication or nutricnt low between kamptozoan zooids, or ol polymorphism anong pooids; these features are characteristic of bryozoans (Brien 1960). Kamptozoan nervous systems are limited to single rooids, while bryozoans have colonial nervous systems linking zooids (Emscherman 1982). Kamptozoan metamorphosis usually involves retention of the larval gut and other larval structures; bryozoan metamorphosis is a "catastrophic" reorganization without retention of" larval leatures (Brien 1959). A recent molecular analysis of complete 18 S rRN R sequences (Mackey (e) al. 1996) provides further evidence against a close relationship between kamptozoans and bryozoans.

Il kamptozoans are not closely related to bryozoans, with what group ol anmals are they allied? Based on embryology (Brien 1059; Nielsen 1971. 1995; Emschermann 1982) and molecular sequence data (Mackey ot al. 1996), affilnities must be sought among other spiralians. Some amors have been impressed by similarities between kamptozoans (especially loxosomatid larvae) and rotifers (Barrois 1877; Harmer 1885; Davenpor 1893; Hyman 1951), or turbellarian Ilatworms (Salvini-Plawen 1980). Haszprunar (1996) proposes a sister group relationship between kamptozoans and molluses, emphasizing similarities such as a chitinous euticle, a circulatory system with sinuses, and a ventral, ciliary gliding sole (at some stage in the life-cyele) and a pedal gland. Alternatively, kamptozoans may be more elosely allied with annelids (Emschemann 1982). Until further evidence resolves the question, the precise phylogenctic position of kamptozoans remains an enigma.

The similarity between adult kamptozoan callyees and tholophores has led to the proposition that the phylum originated by pacdomorphosis. This hypothesis is developed in depth by Jagersten (1972), who envisages the original kamplozoan lifecycle as consisting of a planktotrophic trochophore larva and a benthic creeping adult with a ciliated foot. In this paedomorphic seenario, the original
motile adult was eliminated but its ciliated loot was retained by the larva, which became sexually mature. This larva then gave rise to a secondary hemthic adult, which retained the same ciliary reeding mechanism as the larva, although the ciliary bands eventually were drawn out on to tentacles. The new adult developed a stalk, an attachment organ, and the ability to bud. Haszpronar et al. (1995) recently presented a similar seenario of a paedomorphic origin for the phylum, but beginning with a lecithotrophic larva.

## Key to the orders and lamilies

I (a) clonal: new zooids bucded at ealyx and then released; musentature cominuons between stalk and calyx; star-cell organ absent; Larva ustally with paired lrontal organ
.O. SOL.ITARIA, F. Loxosomaticlac (b) colonial: new zooids budded at base ol older zooids or from stalks and remain connected to cach other. $\qquad$ O. COLONIALES; 2

2 (a) zooids commected by non-septate basal plate; musculature continuous between stalk and calyx: star-cell organ absent; larva with paired lromal organ ..........................Sub.O. ASIOLONATA, F: Loxokilypodidae [known only from Northcastern Pacific]
(b) zooids connected by septate stolon or rarely (Uroutella) septate basal plate; musculature not continuous between stalk and calys; star-cell organ present; larva with unpaired lirontal organ Sub.O. STOLONATA; 3
3 (a) stalk of zooids with continuous longitudinal musculature, fairly wide throughout whole length, stalk and ealyx often with cuticulam spines
.F. Pedicellinidac
(b) stalk of rooids alternating between wide muscular nodes and narrow rigid rods; rods olten with euticular pores; stalk and ealyx generally without cuticular spines.
F. Barentsidata

## Systematics and Australian diversity

Order Solitaria Emsehermann, 1972
Family Loxosomatidac (Hincks, 1880 )
The order Solitaria contains only a single family, the Loxosomatidae. Nevertheless, it is the largest natural grouping of kamptozoans, with aboul 100 of the 150 deseribed species. Three loxosomatid genera are currently recognized (Nielsen 1996): Lorosomella, Loxomespilon, and Loxosoma, and are distinguished primarily by their basal attachment structures. About 20 species of loxosomatids have been reported from Australia and New Zealand but only seven of them are described (Appendis). Many more species centainly remain to be discovered; until


Fig. 8. Loxosomatid diversity. (a). Loxoromella sp. 3 showing foot (b). Loxosomella velatum. (c). Lorasomella sp. 1 with larvac at top of calyx. (d). Loxosoma sp. 2 showing basal muscular disc.
more thorough surveys are undertaken it is impossible to assess the true divorsily Australia's losusomatids,
Loxosomatids which form ctonal emeregations by catycal budding. are considered the mosi plesiomorphic geoup of katopuzoans (Emsehermann 1972. The highly contractile zoodids are ofen very staill (kess than I min high). Calyx and stalk are nof sharply separaled and lomgitudinat musculature is emmous between them. The ealyx and tentacles itre-generally orichted obliguely to the stalk If igs La, 8). The ealycesare often eompressed in the anterionpotierior axis, somelimes so strongly that the zooids tesamble padalles.

In Lexasonueltet, the hasal port of the stalk of buds is differentiated inte a structure fesembling a buman liont (Figs la. bat). The hee of the foot is anterior and eontains a conspicuous gland. A grouve lined by weccasory gland cells suns from the lied to the posterior toe khere it opens. When a hud is relased from ils "porent", it allaches lo the subsiratum by its toe. In some species the zooid retains the glandular Loot lier its ention bxastence and is able to dearel and reftech reperted ly suev its lifetime. In other specjes, the fool of the bot degenerates after atlactoment and the adale beommes permanenfly wemented to the subatratum ( F ins xb . e). Sough of the momolypie gerius lesomespalfor lave a very reduced stalk and foor but otherwisc rasemble Losoxoritella pooids 1Bobin \& Prenani 7953: Nielsen 1996). Seven deseribed snol eight undeseribed species of bovirambeto bre known from Nustalia athd New Zealand, and most of the speeies in the Appendis. Whose basal attachoment structures woudd not foo ussessed (and so ure lisked merely as "Lovosomatid sp." probahly belong to Loxosennella as well.

In lasosoma. ench zooid is ausched by a muscular shetion dise at the base of the stalk (Fig. Xif). additenoal suction dises may becur persteriorly and/or af the base of tho fentactes. (Nielsen 7 dagh, Coobls Ftain tie abilidy to detach and realach. sometimes monory actively autoss the substratum (Fig 2) Nll knawn laspminu larvae have stalked vesicles on the episphere and underge budding rabor than a nomal mstamorphosis (Niesea 199(1). Only thece (undescribed) Eososomber species are kolown from Ausiralia and Neis 7. caliand.
Hoat lomasomatids dwell on obber invericbrates. In sustralia and New Lealand they have been reparted from various sponges, a sipunculan, varmus polychaetes, two birudineans, a squat lobster, two promens, und varouls bryozams (Apmendix). As more potentid hosts in this region are examined for the presernce of toxosermatid symbionss thes lise will cerainly grow. Each lososomatid species appears to lave cithef as angle frust species of a limited sel sit poteltial best spectes. I arvae, and persibly abse bud.
and motile adults, sim momze new hasts, it is not known whether propagule preterence of dilferential mortality on diferent hose speces is responsible for the later disiribulion of adults. Assuctation with other invertebrates has clear benelits for the Joxsisuntaicd. The zooids are aften leated in the pathasy of the liost's reeding of respiratery water comrenls, which They may use for their nown ciliary leeding (Nielsen 1964). The host probably offers the Fragle remods protection trom predation or obher damage: Whether the presence of loxosomatids negalively affects theor hosts is not known: Williams (2000) has shawn that host epidermis may be modified by loxosomatid symbionts.

Worldside: many loxosomatid speces (aboul $\dot{5} 0 \%$ ) live on polychueles; they ure found on sor between the parapodia, ot the gills, on the setae, ar under the elyru of members of ten provelracte amilies- (Nictsen-1989). Lotmomella diohralima/a Willams 2000 and seven undeseribed species of lovosomatids are known lrone polychaetse in Sustritio and New Zealand (rigs Sa, h, sd; Appendix).

While loxosomatid species diversily is highest on polychates, Incosomatid density is probahty hichoset on spotges. Loxosumatids may form strikugly dense aggregationth an sponges - somotims 100,000 zooids on a fist-sizel sponge pRatzlea 1968). Some of these sponge-dwellong korms are unusbally darkly pigmented, and an agetegntion against the hackground of a brightly coloured sponge ean be eye-eatehing. Two undescribed speciss of trowomblla are known from sponges it Nustratis and New Zealand (Fige lia, Ra).

Six lososomatid species in Aushatia (Lozanommelte
 Velatiom (Ell Harmer 19 (5), 1. 8p. 1) grow oit bryozoans (Appendix). Most of these spocies ane smamentod by udd cirtilotm or mans or papilactate. Sh, et, and share other similarities that sogges they somprise a clade; both the eeology and the taxunemy of bryozoan-dwelling species merit turbiter attention. Some bryozom-dweiling lososomatids origmally described by 1 banner (1915) from Siboge cxpalition material. live in pery elose arsocianom with their hosts. One minisente loxosomatid spectes even lives in the compensation sace of its host: almost byery eompensation sace in all inlested bryoroan valonty contains a lowosomatid rooid (Hamer 1915).

Onder Coloniales Emscherminin. 1472 Sub-Order Stolonata Emschermanti, 1972

The sub-brder Stolonata is the other large naturat grouping of kamptozoans and sabibits the sevond hasie hady plan withon the pitylum. The calyees of spolomates are genctally larger than these of Joxesomutids, will stronger ciliary cufrents that
appacently free the zooids from denenderete on fossts elliary currents (Emscherman 1972), Stolonate calyoes are generally lateralty compressed (Fise ta v . 4 b ; Ple. (1)a v. 10b) and museulature is reduced, often to just a few longitudinal strands. the atnal retrachor museles, which extend from the base of the calyx fo the atrium and serve fo depress it ( A abschernatan 1972). ('aly and stalk are separated by actuicolar diaphrager and the calyx-stalk junction is spambed by the empulatocy star-cell organ (Emathermann 1969a): the longiludinal musculature of the stalk is not continuous with that ol the ealyx. The stalk athen bears cutieular pores or spines which vary if size and density ryith envirommenbal sondilions. Stotoname ronsids, as their name implias, grow on syfindrical stolons bat are usually divided itto leftile (rourd-bearing) and stente (mor /oons) segments by transverse septa (Figs )b, e. 4a). The septat masy function to sprace the cooids, thus ayonting interfercnee in feeding, or may prevent damage by sealheg of intaed seetions from hambed ones.

Stolotate kamptozons ate members of the sessile bentbic community and often grows logether with hydroids and bryorvans. They are preyed upon by nudibranch motluses some of which appear to specabioe on barensaid species (Macbonald \& Nybukken 1978\%; predation by turbellarian Hatworias has afso been observed (Connmeg \& (arlon 200(f), Aliough sckoun conspicuous. btolonate kampozoons are often fairly abundant I fave found solonates interidally at every site stirvered in Alsstatia and New Zealand by collecting various substratia (mostly sponges. ascedans, bryowans. worm tubes and bivalve shelis) in the field and examming them if the laboratery. In sone lountities, an ustombling $500^{\prime}$, $75 \%$ bf all substeata sciached were infosted with stolonate famplozozins. althongh the level was usually about $5-10 \%$ at other siles.

Family Podicethindac: (Jotonstem, 1847 )
The Fanrity Pedicellinidae is considered mare plesiomoptio than the Barentsidae (Emschermann 1472): pediectlinid zooids retain a faiily simple pooidal smeture, with undiflerertuted stalk.s that have contuuous musculatuts. Kive trenera ate reengrised hat four of these f(\%uospis, Lompomatender. Mbrosombe, Sangateilef) contan anly one on two species, and have bol been reported From Australia or New Tealand. The Tanger genus Peducellina comprises about awelve specien sonldride, six of swhich are known lrom Austratio and New /ealand (Appendix).

In colder waters of this regions, $f$ n mheregrori Johnston \& Walker $\{917$ (Fizs $16,4 a, b, 9 c \mid$ is ubigoitous and ean be collected readily from costital hathiats (Wassort 1995). This speceses is recognized
by its spination, by the distinctive glisteninge, douhle rense of large cells on the tentackes, and by its ath. parlicle-covered larva (Tig. of ). Io warmer walers ? ? whiteleggii is replaced by another abumdant specien $P$ comperera Harmer 1915 ( Fig -9a), which is characterized by sbort, squal zonids ornamented with filitorm spunes (Wasson 1945).

A rater pedicellinid from Gago, New Zealand, and Tismania is Pediaselimet purfortmis Ryland 1967 (Fig. 9b). The stalks grow of to 6 min high, and calyees can be almosel 1 mom high this speotes is a ghant anong the svortd's pedieellimids. Zomids an: abso inore densely elustered in this species that in other pedicellinids. The wide sololens lack septa; the whence of intervening sterile stuments allows couds w grow very close wegether along the stolon.

## Family Barentsidac Emschemand. 1972

This family is characleriaed by the divisim of the statk into wide. llevible museular nodes and natrow. rigid, non-muscular rods that are ofien perforated by pores (figs le, llec, lle). An incomplete euticular seplum separales bacti node from the rod above if, There is a mimoum of one basal node and one rod apieal tof it, but many speetes have multiple alteriating modes and rods, lending a segmented appeatiares to the stalk,

Five genera of barenksids are recognized. Corishla. Pa-udopedicellime. Pedicellmoposs and Unorefld the sole fieshwater formi) each contain a single spocies: most of the roughly thirty known barentsid species betong to the getlus Batentria. Seven barentsisd species ure known from dustralia and New Zealand (Appendis), six in the gerus Bamentio and onve it the genus Pedicellint petis. The comman species of colde! Waters, Barentsia spi I (Figs |c. Гila, b), is characterised by small. delicale zowids only about I mm high. usually with I-3 senes ol stalk nodes and rods. In warmer waters, $B$. spo I is supplemented by Be genteuldier Harmet 1015 1fig. foct which has many (ayerage +5 ) series of stalk nodes and rods. In its seginented stalk structure. $B$. genienture resembles the eosmopolitan specien $B$. benedeni (kowtinger $1 \times 371$ (fowosd in Ausmitian tarbours). from whel it ein the distingushed by its. svider, shorke modes and by the less prommenced anterior orientation of the calyx.

Pédicullincipsin frumaza T/unchs 1854 (Tig. 11 ) is a remarkable harensiid apparently endemis to southern Austalian waters (Appendis). Eonids spiral aroumd at hard central sten (Eig. (1a), Imon whech eneh fooid is separated by a septum. Enef stem resumbles a tres-Fern, with the newest xooids al the apien growing tip, older regions of the stem where zooids have degethetated have spifal patterts of arod seats ats do lower regions of thoe-fern trunks. The lfock, rigid siems branch, formong bushy


Fig. 9. Pedicellinid diversily. (a). Pedicellina compacat (b). P proformis. (c). P whiteleggit


Fig. 10. Barensiid diversily. (a), ard (b). Burentsh sp. I in side and anterion view, respectively, (c), B. gemaculand.
colonies that may reach 30 em across, far and away the record for a kamptozoan. They are anchored to the substratum by a lush basal growth of liee stolons, which extend downwards 60 serve as rhizoids and secondarity back up the stem, becoming intertwined with it. Individual zooids, although unsegmented. grow to a length of 6 mm . The nodes are large and anmulate (Fig. Ile). The rods are a deep golden brown due to a very thiek cuticle and make a striking contrast to the pale
calyees and modes. The rods are decorated with blternating rows of bubble-like pores and pairs of lateral cuticular ridges (Fig. (1b, c), a pattern of stalk omamentation not known from any other barentsid. A large cuticular spine extends up past the stalk-calyx junction on the aboral side of the roord (Fig. 11h). With its long list of unique leatures. Pedicellinopsis firuticosa may be the most highly derived member of the phylum Kamptozoa. It has yet to be observed alive.


Fig. II. The barentsiid Pedicellinonsis frutionca. (a). Colnoly, showing cooids spialing off of thick main stem. (b). Calys and posterior spine. (c) Stalk, showing large annulate rode and regularly ornamented rod.

## Perpervines on the Austratian fouma

Reports of kamptozoans from Australian waters are searce. and currently only about 37 specics of kamplozoans atre known from Australia and New

7ealand (Appendix), Ilowever the Australian kamptozoan lanna is unusually varied, encompassing extremes of the body plan. The world"s largest kamptozoan, Pedicellinopsis
framerisa, dwells in these waters, as de some ol the wortd's smatlest kamptoroans, liny lemessembelto species on bryozoan hosts. Alstratian species may atse hold the record lor the greatest density wl coodds in colonies: Puda ellinu prafiommis packs in one giani cooid aties another solong its peculiar non-septate stoton, while in Peatheallimopsis firdicosed, zooids spifal around it rigid central slem resuting in a densily of pounds and a growfl paltern unk mown in othet kamptozoalls..

Kamplozanns in Amstalia are neiber rare nor hard to find. The fauna of Australia is so pootly debancturized that new and unreported spectes (as well as those lised in the Appendix) probably can be colleced in moly a lew hours anywhere alones the sogst, Beyond taxonomis identity, we koow virtually mofling abous the biologey of Australian species. The bitte we do know leads us to suspeet that furtien investigations hold mueh promise for new insights into kamptozoan ecology, symbiotic relationshijs. tatsal biologes. biogeography and phylogeny, Certainly, given the geographieal dimensions and ecologieal diversity of this country, many new motphological adaptations and life history variations are likely to be revealed when the Australtan
kamptozoat fatma is mote thoroughly examined.

## Acknowledgments

I am deeply gratefil to P. sunold. E. \&. M. Barker. R. Berent: D. Gordon K. L. Gowlett-Idomess, $\$$. O'Shea, S, Shepherd, and W. Zeider for their hospitatily and ler beer assistance in accessing museum collections and earrying out fieldwork in Australia and New Zealand Environment Australia generously fighed my rieddwork and, through the Australian Biological Resoures Study ( $\triangle B R$ SV). commissioned this review as a part of the Famua of - Austration, wheli series was closed prior to publication of this chapter, $T$ am indebted to A. T. Nenberry. C. Nielsen, J. Pearse and 1). Potts lor their thoughtiol comments that greadly imponved the cantent, and to A. T. Newbery it particular fis invaduabe guidance with the writing. Fiballx, many thanks to a leam of defietinfilly supportive edifors: fram ABRS. C. Giashy for inibiating this projeet, and G. Ross and A. Wells for tending to its development: and from the Rayal Socicty of Somith Austadia, I, Bind for fomeing is of frution, The leares are publistied with the kind permission of ABRS.

## References

ALLMAME 4. I. (1856) "Monograph of the Tresthener Pulyzad" (Ray Soctcly I Boghon)
Assintov. R. (1912) Loresoma Loxalimu and Laveswhe
 $117-143$
 stoproce Palgzoa. and a comparisory with that of the evtopesel Polyrin. Tlisd 75, 393-423
Bat to ks, M: (1885) "Comparalive Embryology", Vol. 1 (Macmillim. ( omiden)
13askits. ). (1877) Memonice sur Vembryakogis des
 2e. $\operatorname{Carm} 396.1-29 y$.
B (cher, 31. (1938) Untersuctumeen iiter den Darm Ind aie Verdaumy yon Kumprozoen, Bipyozen omd Phomitniden. $<$ Moryin Okol. Tïre 33, 71-137
lamik. G. \& Promant-M. (1953) Dene I axosomés
 \&

 vol 5 (Masson, Pacis).
(19007) Ie bourgeonnement ef la phylugenése der 「ndoprocies el des lietopriopers Rellexamos sur len
 Arn Betg (5th Ser 1 +6. $748-7$ bo .
 11.M.S. Chaflenger durine the years 18.73-1N76. Part II. The Cyelostomats Clemostonata, and Pediceltiona.
 47.
 Kampterant (Entaprocta). Invert Rind. 119. 380.387





 kirumbach, I (Eds)"Handhuch der Znologie" Vol. 2 (W. de Crmyer, Bettim).

 PL 2. Book - (Akademische vertugseesaltheloits: (exprig).
 Conap. Roul. (I wemard Limb-) 24, 1-44


 comallines" (Millat Lomatros.
Emscill BMANA. 1: (1961) Clthet Brutkurper bel dem Kimptorion Batentwo grariliv Sars. Zonl Jubeh (F'hysioh) 6y 375. 33x.
(IM65) Das Pomoncplididensysten von
 (Dyul. Ficoce 55, 859-2) 1
(1969i) Lin Krcisbuliorgan bei Kanmpucaen. Zath Zelluasth 97, 576-607
(10199h) Spmalig magerdnetu Unerembeiter in don A-Vilamenten det Kamphrosnmuskulatur.

 (Kamptomas. I acokalypodidae lam nat), vin meqer kimplozoentyp ills dem rordlichen Pikilischen Oeath. Fin Vorschlag aur Veulidsamis der Kamptopoes systemanik. Ahar: Bitul. 12. $2377^{-}$ 254
(1982) Les kemptoroaires. Fith aehel de nos
 leme hiologie et lan position phylogenelique bull Sm Zort Ar: 107-317-3.4.
$\qquad$ (1085) Factors inducine sexual maturation and mfluencine the sex determination of Barentsod discreke Busk (Entoproctia, Barentsidac) pp, 101-108 In Niclsen. C, and I antuond, G.P. (Sids) "Bryozoia: Ordovician fo Recen" (Olsen \& Olsen, Fiedenshorg, Dembark). (1987) Creeping propagation stolons - zu elfective propagation system of the freshwater entoproct
 108, $439-48$ (1993a) On Amancte Rotepnectas nematocystlike arguns in it Ioxosomatid. adaptive developmental stategies, host specificity, und bipolar enecarrence of specics, Biol Full 184, 1.67-185. (1493h) Litic-(itit ulambs: a unique invention If an Amarelic entsproct. Ihid I85, 97-108
 Lomoxomelta fanvelt, Banehsia marsmshmana and Pedicellima ceromed. Implisations for the poronephirida in the ground pathern of the Entoprocta (Kamplozast). Wheref Nar 8. 7-38.
 Adiyodi K.G. \& Adiyodi R.G. (L.ds) "Reproductive Biohgy of haserehgales" Wol. I (Wiley \& Sous, New York).
(168333) Bryuzoal Eintoprocia pp. 505-517 /77
 Bialmy of havehraks" Val. 2 (Wiley \& Sumb, New Yoplat

 721-732.
Gemenery 12. D. (1472) Biodogical relanemships in an

 Okakari Point Marine Reserve: reviens ot kmowledge and
 ( $\mathrm{th} / \mathrm{m}) 22$ (sumpl.) I 14 (\%.
 Lemonoma. Quart I Whrence Sci. 25. 261-337.
(18 8 7) (on the lifelistory of Periceltimes. Thed 27. $344-263$.
(1915) The Pulyam of the Sibuta I ixpedition.
 Shater Expl Reyl 28A, 1-180.
Haslivis. A (1932) The Polyron. Go Bam: Razf Exp. $1028-1020$ S. 7. Rop $+349-458$
 with apsectal neterence le certain Ausiatian Forms, Pros. L/me Sim N. S, 14:22, 324-35\%.


 the Vollusea" (Oximed Liniversty Irpess. I nadon).
 Larval planktotrontey -a poimitive Irail in the hilatena" Itcal Vool. 76. 141-154.

 $5(12-549$.
 Jema).
16 1215 (. (1915) An exologienl skereh in the Fydney Beaches (Prexidentaladdress) I Pion Ahy Sin NS If 49. 15-77.

Ithsian maser, 1. W. (1898) On the wecurrence of Redicellome

Herose W. A. (1423) A study of the movements of
 1.35-141.
 (Vam Veonst. 1 anden).

- 1884 ) Comtributions Lovards a enceral hostory
 356-364.
 Hill. New York).
Jün Rsiew, G. (196t) On the morphology and reprodanion of entopreet harvac. Zool. Bid. U/ms 36. 295-314
(1972) "Exolution of the Metazasn 1 ife Cyele" (Scidernic Press New York).
Jotmans. C. ( 1982 ) Composithon chimigue compares des
 endoproctes. Bull. Sice Zosel. İ: 107, 233-219.
 cd. (Van Vousst, London).

 60-6.2.

 4. 215-231.
 Sp. 11, den Schmarober emer Amelide. Unteranebungen uber niedere Sestiere. Zoil. Miss. Zonl. 12, 131-132.
 collections made in 'Tones Sirats by Prolesser AI' Hadden, 1858-1884, Hydmida and Poly asa. Scz, Proc:

(1890h) Polydea from Pom Thillan Ahm Ment Nith. M1/iN 6. 12-21
florbosky, it. (1405) thie Embryonatentwickfone der

 NeI Briz Mhil $5,3210-322$.
 notes on the fored of some Califormia madibranchs with a sumpary of konown fored babito of calimona aposes Eviker 21, 110-118.
Mas (ithiveay, 13. II, (1887) A Eabalogue of the mbatice


 LKS IKNA sugeess Hat Lotoprocta ance protostonmes, worelated to Lictoprocta, A. Ablea, Eivol. 42, 552-550.
Malabaity. V. V. (1990) Desemphan of the development of -fseopendenga diserveg (Gistoniales, Barensaidae) und dixedssion of the Kampsozes status in the antimal
 $20-30$.
Mamisi Al. R. N. (1903) The adult and larval mempholagy
 Sars 18351, Nouphod. 116.311-338,
 Pearse. d\& (Jada) "Reprothethen of Marime Invertchrates" Vol. 2 (Acadermic Press. New York).
Makets. 1 (1939) isriozonhlos marithos hasileiros. Mil.
 205.

 Znoul. 215 26) 27n,

 Thid $213-43-59$.
 1. 1-76,
(1900) On the life-cyale of strome

(1071) Entoproct lifu-syctus airl Die

(1989) "4 naymoss" Synopses of the Britist

___ (1995) "Animal Evolution" (Oxford University Press, Oxford).
(1996) Three new species of Lorosoma (Fntoprocta) from Phuket, Thailand with a review of the genus, fool. Sot: 25, 61-75.
d Itsm:RSEN, A. 1497. Entoprocta pp, 13-43 m . Harrison,. I:W. (Ed.) "Mïcroscopic Anatomy ol Invertebrates" Vol. 13 (Wiley-Liss, Inc., New York).
\& RosiliaArd, I. (1976) Structure and lunction of an entoproet tentacle with a discussion of ciliary leceding types. Ophelitr 15, 115-40.
Nıréllf, II. (1870) Beiträge zur Kenntuiss der Bryozoen. \%eit. Wiss: Lool. 20, 1-36.
P'Al IAS, P. S. (1774a) "Spicilegia Zoologica, quibus novac et imprimis obseurae animalium species iconibus. descriptionibus atque commentariis illustrantur" Vol. I ( $\mathrm{G}, \mathrm{A}$. Lallge, Berlin).
(1774b) "Naturgeschichte merkwüdigur Thicre. 7oophyta" ( $\mathrm{G} . \mathrm{A}$. Lange, Berlin).
PriNANT, M. \& Bubin, G. (1956) Bryozoaires. Pt 1. Entoproctes, Phylactolemes, Cténostomes. Famme Fr. 60, 1-398.
RI: (ilik, I. F. (I969) Studies on the fine structure of muscle fibers and contained erystalloids in basal socket muscle of the Entoproct, Barentsia gracilis. .J. Cell Sci. 4, 305325.

ROTALI:R, K. (1968) Loxosomella from Tedania ignis, the Caribbean fire sponge, Proce: U. S. Nat. Mhes. 12-t, 1-11.
Ryl.ANI), J. S. (1965) Some New Zealand Pediccllinidae (Entoprocti), and a species new to Europe. Trans. Row. Soc. N. Z. 6, 189-205.
\& Austin A. P. (1960) Thare apecies of Kamploroa new to Britailn. Irooc: Zool. Soc: Lomedom 133, 423-433.
SAIVINI-PIAWI:N, L, V. (1980) Wals ist cine Trochophora? Eme Analyse der larventypen mariner Protostomier. Koon. Jalrib. (Anct.) 103, 389-423.
SARs, M. (1835) "Beskrivelser og lagtlagelser over nogle maerkelige eller nye i llaver ved den Bergenske K'yst levende Dyr al Polypernes, Acalephernes, Radiaternes. Anncliderines og Molluskernes Classer" (T. Halloger, Bergen).

Smbliger, O. (1889) Die ungeschlechtliche Vermehrung der endoprokten Bryozoen. Zeif. Wiss. Zool. 49, 168208. der Bryo\%oen. Thid. 50, 560-594.
TODD, I. A. \& Taylor, P. D. (1992) The tirst forsil entoproct. Nenmrwiss. 79, 311-314.
Torbumi, M. (1951) Some entoprocts lound Matsushima Bay Sci Rep. Tóhoku Umir, 4 hh Ser: (Biol.) 19, 17-22.
Var Benedin, P. J. (1845) Recherches sur l'anatomic, la physiologie et le développement des Bryozoaires gui habitent la Côte d'Ostende. Histoire naturelle du genre Fedicellima. Nomv: Mem. Acad. Rov: Sci. Bet. Let. Brux: 19, I-31.
Washon, K. (1995) The kamptozoan Pedicellina whitsleggii Johnston and Walker, 1917 and other pedicellinids in Australia and New 7ealand. Ree: S. Anst. A/ns. 28, 131.141.
(1997) Sexual modes in the colonial kamptozoan genus Baremsia. Biol Bull 193, 163-170. (1998) Sexual reproduction in the colonial kamptozoan Barmsio hildegortere. Imert. Biol. 117. 123-128.
\& SHFPHERD, S. A. (1997) Nodding heads (Phylum Kamplozoa or Entoprocta) pp. 975-992 In Shepherd, S. A. \& Davies, M. (Eds) "Marine Invertebrates of Southern Australia" Pt 3. (South Australia Fauna and Flora Handbooks Committee, Adelaide).
Waters, A. W. (1904) Bryozo pp. I-II§ In"Résultats du Voyage du S.Y. Belgicu" (I. E. Buschmann, Anvers).
Wintelecief, T. (1889) List of the marine and fiesh-water invertebrate fanma of Port Jackson and the neighbourbood. J. Proc. Roy. Suc. N. S. W. 2.3, 16.3323.

Wiltiams. J. 13. (2000) Descriptions ol two loxosomatids (Entoprocta), with emphasis on a relationship between symbiont attachment structures and host cuticle. Comuch. J. Zool. 78, 110-120

Woollacomp, R. M. \& EAKIN, R. M. (1973) Ultrastructure of a potential photoreceptoral organ in the larva of an entoproct. J. Ulirasituct. Res, 43, 412-425.

## Appendix

## Known kamptozoan diversity in waters around Australia and New Zealand.

This impendix lists the 19 described and 18 undescribed species of kamptozoans known from Australia and New Zealand. The lifst column gives the species nane, Undescribed species have been assigned a number. Those loxosomatids whose basal allachment (generic character) could not be determined are listed simply as "loxosomatid". The second cohmongives the author ol the original species description for described species, or a brief descriptive phrase (for loxosomatids, host is given) for undescribed species. The third column gives tbe citation for occurrence of this species in Australia or New Za annel. For new records (Wasson. this paper), the name of the collector is given in parentheses. The fourh colnmn lists (abbreviated) the Australian State or the Istand of New Zeildand where the species was found.

FAMIIY I, OXOSOMATIDAE ( 7 described +17 undeseribed species)

| Luxesommela breve | (Harmer, 1915) | Hastings 1932 | Q1. ${ }^{\text {P }}$ |
| :---: | :---: | :---: | :---: |
| Loxoscminella circmare | (Harmer, 1915) | Hastings 1932 | QLD |
| Lasosemmella cirriferum | (Harmer, 1915) | Hastings 1932; Wasson, Ihis paper (R. A. Birtes \& P. Arnold) | QLD |
| Iovensomelle diopraricold | Williams, 2000 | Williams 2000 | VIC |
| Lexosomella kepernteinii | (Claparède, 1867) | Wasson \& Shepherd 1907 | S^ |
| Invosometla pusillum | (Harmer, 1915) | Hastings 1932 | QLD |
| Loxosomella vektmm | (Harmer, 1915) | Wasson, this paper <br> (R. A. Birtles \& P. Arnold) | Q1. |
| Lexessemeltasp. I | on bryozoan | Wasson \& Shepherd 1997 | SA |
| lonomsmilla sp. 2 | dark zooids on sponge | Wasson \& Shepherd 1997 | SA |
| Lowosomella :p. 3 | light awids on sponge | Wasson, this paper <br> (M. Barker \& K. Wasson) | SNZ |


| Levosomella sp. 4 | On polychache Sathenelais | Hastings 1932 | QLD |
| :---: | :---: | :---: | :---: |
|  | Onl [olymid polycluate | Wasson, this petper | SN7. |
| Leciosmmella sp. 6 | an jramme | Wassom, this papar (R. I ester) | NT' |
| Sowosomalla sp. 7 | on polychacte | Wasson, this paper (1). (iurdon) | NNZ. |
| Loxomomella sp. 8 | on polychate limice | Williatss 2000 | VIC |
| Lembarmar sp. I | On polychate (opperingspol | Haswell 1891; Inasting 1932: <br> Wasson, this paper <br> (R. A. Birtles \& P. Armold) | $\begin{aligned} & \text { Q1.D } \\ & \text { Q1.D } \end{aligned}$ |
| Loderspmate sp. 2 | on polychacte Perrimarid | Woisson, this paper (J. Collins) | Q! ${ }^{\text {a }}$ |
| Lomovomar sp. 3 | on polychaete Aviothe'lho | Wisson, this paper (1). Gordon) | NNZ |
| Soxosominid sp. 1 | on siputculan /hascoloswama | Whitclegge 1889 | NSW |
| İanosomatid sp. 2 | on hirudineem Branchallion | Goddard 1909 | WA |
| [oxosomatidsp. 3 | On hirudincaur Pemmobelfa | Goddard 1909 | WA. NSW |
| Loxusomatid sp. 4 | On bryozosan Ammeria | Harmer 1915 | VIC |
| Loxosomatid sp. 5 | on squal fohster Thermm | Waston, this fapmer (R, I eester) | QLD |
| L 6xosommatide 6 | on inparjum walls | Gerdon \& Batlautinc 1977 | NN\% |

FAMIIY IEEI)ICEISINIDAE (6 deseribed species)

Padicellinal corosta
Pedicerlinus rompartat
Pedicellinas sramilis
Pedicellism permos
Podicellina puiframis
Pedicellan wisinelegesi
(Pallias, 1774)
I Famer. 1915
Ryland. 1965
Ryland. 1965
Ryland, 1965
Johnston \& Wilker, J917

Kirkpatrick 1890b;
Chillleloorongla'; Wasson 1995
Hastings 1932: Wasson 1995
Ryliand 1965
Ryland 1905
Ryland 1965, Wasson 1995
Wasson 1995 (and others cited therein)

VIC.SA
OLD
SNZ
SNZ
SNZ. TAS
NSW. VIC. SA, NNZ. SNZ.

FAMIIS BARENTSIIDAE (6 deseribed +1 undeseribed species)


[^1]
[^0]:     LA.95076. 1 SA. E-mails reseafolvicolkhomshotghore

[^1]:    

